The Galois Correspondence between Subvariety Lattices and Monoids of Hypersubstitutions
نویسندگان
چکیده
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
منابع مشابه
The Order of Hypersubstitutions of Type (2, 1)
Hypersubstitutions are mappings which map operation symbols to terms of the corresponding arities. They were introduced as a way of making precise the concept of a hyperidentity and generalizations to M-hyperidentities. A variety in which every identity is satisfied as a hyperidentity is called solid. If every identity is anM-hyperidentity for a subsetM of the set of all hypersubstitutions, the...
متن کاملComplexity of Hypersubstitutions and Lattices of Varieties
Hypersubstitutions are mappings which map operation symbols to terms. The set of all hypersubstitutions of a given type forms a monoid with respect to the composition of operations. Together with a second binary operation, to be written as addition, the set of all hypersubstitutions of a given type forms a left-seminearring. Monoids and leftseminearrings of hypersubstitutions can be used to des...
متن کاملM - Strongly Solid Monoids of Generalized Hypersubstitutions of Type Τ = ( 2 )
The purpose of this paper is to characterizeM -strongly solid monoids of generalized hypersubstitutions of type τ = (2) which is the extension of M -solid monoids of hypersubstitutions of the same type.
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملCancellative Residuated Lattices
Cancellative residuated lattices are a natural generalization of lattice-ordered groups (`-groups). Although cancellative monoids are defined by quasi-equations, the class CanRL of cancellative residuated lattices is a variety. We prove that there are only two commutative subvarieties of CanRL that cover the trivial variety, namely the varieties generated by the integers and the negative intege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001